
PHYSICAL REVIEW E 68, 026133 ~2003!
Dipolar effective interaction in a fluid of charged spheres near a dielectric plate
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Static correlations in a classical fluid of charged spheres at equilibrium are studied in the vicinity of an
insulating wall characterized by its dielectric constant. It is well known that the deformations of screening
clouds induced by the presence of the wall result into an effectivef aa8(x,x8)/y3 interaction in the pair
distribution function between two chargesea andea8 located at distancesx andx8 from the wall and separated
by a large distancey along the wall. We investigate the structure off aa8(x,x8). The method is based on
systematic resummations in the Mayer diagrammatics, which are valid both in the bulk and in an inhomoge-
neous situation. The screened potentialf arising in the formalism happens to coincide with the linearized
mean-field approximation for the immersion free energy of two external unit charges.f is shown to decay as
a repulsive ff(x,x8)/y3 interaction, whatever the density profiles may be.f f(x,x8) takes a factorized dipolar

structuref f(x,x8)5D̄f(x)D̄f(x8) for distancesx and x8 larger than the maximum of the closest approach
distancesba’s to the wall for every speciesa. Moreover, we devise a reorganization of resummed diagram-
matics, which is adequate for the determination of the large-distance behavior of correlations, and we prove
that, when all species have the same approach distanceb to the wall, f aa8(x,x8;b)5Da(x)Da8(x8). In this
case, the leading tail of the effective electrostatic interaction between two like charges at the same distancex
from a single wall is repulsive. Results are independent of charge magnitudes, of excluded-volume sphere
sizes, and of the existence of a surface charge on the wall. It holds whether charges are concentrated at sphere
centers or uniformly spread over their surfaces. Comparison is made with an experiment about dilute colloids
where the linearized mean-field approximation proves to be relevant. At equilibrium attraction between like
charges in confined geometry might arise from purely electrostatic charge-charge interactions only through
correlation effects not taken into account in the latter approximation.
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I. INTRODUCTION

A. Issue at stake

The paper provides exact analytical results about the e
librium pair correlation in a fluid of charged spheres in t
vicinity of an insulating wall. The first motivation for the
work was to cast the lightening of statistical mechanics
charge fluids on experiments that reported attractions
tween like-charge colloids in confined geometries. These
loids are mesoscopic spheres whose individual motion
be tracked with a conventional microscope and a vid
camera. Hence, the static pair distribution function
1hcol col(r ,r 8) between two colloidal spheres located at p
sitionsr andr 8, respectively, can be experimentally asses
when colloids are constrained to move in a given plane.@The
static correlationhcol col(r ,r 8) is also known as the Urse
function; see e.g., Ref.@1#.# The quantity of interest in ex
periments was the effective pairwise interacti
wcol col(r ,r 8), also called potential of mean force. Quite ge
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erally, the effective interactionwaa8 between two charges o
speciesa anda8 is defined from the Ursell functionhaa8 by

11haa8[exp~2bwaa8!. ~1!

When speciesa has a packing fraction so high that th
nearest-neighbor distanceaa is of the order of the rangesa
of short-ranged repulsions,waa and haa have oscillations
with period aa over a scale equal to a fewaa’s @1#. When
speciesa is very dilute, the oscillatory excluded-volume e
fect disappears, and, if other species have not far larger h
core sizes, the functional forms ofwaa andhaa at distances
larger thansa are controlled by long-ranged pairwise inte
actions. For the considered colloids, which acquire a surf
charge by solvatation, the long-range interaction is of el
trostatic origin.

In an experiment carried in 1997 with dilute colloids
the vicinity of a glass wall@2#, Larsen and Grier showed tha
wcol col for two colloids at the same distancex from the wall
becomes attractive at large relative distancesy. This result
raised a debate~see Sec. VI A for more details! where all
theoretical works predicted that there was no attraction
equilibrium. Eventually Squires and Brenner@3# argued that
the attraction determined in Ref.@2# could be accounted fo
by an electrohydrodynamical effect linked to the electrosta
repulsion of colloids from the surface charge of the w
~which has the same sign as that of colloids!. However, at-
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traction between like-charge colloids has also been obse
in several experiments where suspensions are confined
tween two plates~see references quoted in Ref.@4#!. In the
latest one@4#, Han and Grier still find an attraction, thoug
kinematic effects are negligible. Therefore, a question
mains open: at equilibrium might confinement combin
with many-body effects induce an effective attraction b
tween like charges at large relative distances?

The aim of the present paper is to revisit the structure
the large-distance behavior of the equilibrium correlation
tween dilute colloids in the vicinity of a single glass wa
thanks to exact results derived in the framework of statist
mechanics of charged fluids. We consider a fluid of char
spheres at equilibrium in the vicinity of an insulating wa
characterized by its dielectric constanteW . Microscopic pair
interactions are sums of purely charge-charge Coulo
forces and hard-core repulsions. Coulomb interaction
tween two chargesea and ea8 of speciesa and a8 located
at positions r and r 8, respectively, is written as
(eaea8 /esolv)v(r ,r 8), where esolv is the solvent dielectric
constant andv(r ,r 8) is the solution of the Poisson equatio
with adequate boundary conditions. For point charges,
Poisson equation in the Gauss units reads

D rv~r ,r 8!524pd~r2r 8!. ~2!

For charges spread over spheres, the Dirac distributiond(r
2r 8) is to be replaced by a surface distribution. In the
cinity of a wall, symmetries enforce thathaa8(r ,r 8)
5haa8(x,x8,y), wherex andx8 are the distances ofr andr 8
from the wall, while y is the norm of the projection ofr
2r 8 onto the wall plane.

It is well known that, far away from the wall, correlation
decay exponentially fast when the distance between cha
goes to infinity. On the contrary, in the vicinity of a wal
deformations of screening clouds enforced by the presenc
the wall is expected to generate algebraic effective inte
tions between charges~see Ref.@5# for a review!. At suffi-
ciently large distancesy along the wall, the 1/y3 interactions
dominate all other tails, which decay either algebraically
exponentially,

haa8~x,x8,y! ;
y→1`

2b
f aa8~x,x8!

y3
, ~3!

whereb51/kBT is the inverse temperature. (kB is the Bolt-
zmann constant andT is the absolute temperature.! On one
hand, property~3! can be inferred from explicit calculation
in the weak-coupling limit@6–8#. On the other hand, the
existence of the 1/y3 decay is confirmed by a mesoscop
result. By an argument based on linear response theory
macroscopic electrostatics, Jancovici@9# settled that the cor-
relation between the densities of global surface charges s
rated by a distancey decays as 1/y3 with a universal negative
coefficient. The property can be written as
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1`

dxE
0

1`

dx8(
aa8

eara~x!ea8ra8~x8! f aa8~x,x8!

5
~eW /esolv!

8p2b2
~4!

and the corresponding interaction is repulsive. Indeed, pr
erty ~3! and relation~1! betweenhaa8 andwaa8 imply that in
a dilute fluid

waa8~x,x8,y! ;
y→1`

f aa8~x,x8!

y3
. ~5!

We notice that the limity→1` means thaty is larger than
the radii of particles, the screening length and the dista
y!(x,x8) where exponential tails are overcome by t
1/y3 tail.

B. Main results

The structure of the functionf aa8(x,x8) is investigated
for any value of the Coulomb coupling in the dilute flu
phase. The main results of our analysis and their con
quences in the case of dilute colloid suspensions are the
lowing.

First, the immersion free energyuqq of two external
chargesq in a dilute electrolytic solution has a 1/y3 tail,
which is repulsivefor any x or x8 when it is calculated in a
linearized mean-field scheme. When the electrolyte is dilu
the large-distance behavior ofuqq5(q2/esolv)c can be cal-
culated by a mean-field theory, because of the long rang
the Coulomb interaction. Moreover, if the Coulomb coupli
is weak at considered distances or ifq is infinitesimal, a
linearization inq can be performed. In a linearized mea
field approximation@10# cLMF is independent ofq and coin-
cides with the screened potentialf that arises in the formal-
ism devised in Sec. II. In Sec. III we show that, at lar
distancesy along the wall,f(x,x8,y) has a 1/y3 tail with a
positive coefficient at all distancesx andx8 from the wall

f~x,x8,y! ;
y→1`

f f~x,x8!

y3
with f f~x,x8!.0. ~6!

In the case of a suspension of colloids with bare solva
chargeZcole ~wheree denotes the absolute value of the ele
tron charge!, in the limit where colloids are infinitely diluted
wcol col tends to the immersion free energy of an isolated p
ucol col5(@Zcole#2/esolv)c ion , where c ion is calculated in a
fluid that does not contain any colloid. In a linearized mea
field approximation,c ion

LMF5f ion and the free energyucol col
LMF

has a repulsive tail by virtue of Eq.~6!. Besides, in a colloi-
dal suspension at finite dilution, the linearized mean-fi
approximationwcol col

LMF for the effective interaction betwee
colloids also has a repulsive 1/y3 tail. Indeed,wcol col

LMF is pro-
portional to f @6,11#: as for any speciesa, wcol col

LMF 5

2hcol col
LMF /b5(@Zcole#2/esolv)f, where f is calculated in a

fluid that contains colloids.
3-2
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Second, the coefficientf f(x,x8) of the 1/y3 tail of
f(x,x8,y) is shown to take a dipolar form when bothx and
x8 are larger thanbmax, the biggest one among the close
approach distancesba’s to the wall for every speciesa,

f f~x,x8!5D̄f~x!D̄f~x8! ~7!

when x.bmax and x8.bmax.

The effective dipoleD̄f(x) has a constant sign whenx varies
from bmax to 1`.

If all species have the same closest approach distanceb to
the wall—as it is the case in an electrolyte where the diff
ences in the various ion diameters are negligible with resp
to all other characteristic lengths—Eq.~7! implies that
f(x,x8,y) has the dipolar structureD̄f(x)D̄f(x8)/y3 at all
distancesx and x8 in the fluid. Then, as shown in Sec. IV
f aa8(x,x8) defined in Eq.~3! is, in fact, equal to the produc

f aa8~x,x8;b!5Da~x!Da8~x8! ~8!

if ba5b for all species.

The functionDa(x) in Eq. ~8! is to be interpreted as th
dipole associated with a charge and its screening cloud
shape is a function ofx more complicated than the mer
exponential decay~74!, with Af51, calculated in the weak
coupling and high-dilution limit.@The first correction to Eq.
~74! is calculated in a forthcoming paper@12# for the primi-
tive model defined hereafter when the wall carries no surf
charge.# The sign ofDa(x) may vary withx.

Results~6!–~8! are valid for any strength of the Coulom
coupling in a dilute fluid phase and for species with vario
excluded-volume sizes.~The closest approach distance of
particle to the wall is not necessarily determined only by
size.! As discussed in Sec. V, these results also hold when
wall carries a surface charge, or when the charge of so
species is not concentrated at a point, but spread on a sp

When all species have the same closest approach dist
to the wall, an important consequence of factorization~8! of
f aa8 into a product of dipoles is that the effective interacti
between like charges (a5a8) is repulsive whenx5x8. On
the contrary, when the species have different closest
proach distancesba’s to the wall, as it is the case in a co
loidal suspension,f aa8(x,x8) is not factorized contrarily to
Eq. ~8! and f aa(x,x8) for like charges may have any signa
priori , even whenx5x8.

The behavior of electrostatic correlations in the expe
ment of Ref.@2# about dilute colloids is discussed in Sec. V
The relevance of the present model is checked from the
perimental data in the bulk. At investigated relative d
tances, electrostatic forces dominate short-range interac
and the functional form of the effective interaction is co
troled by the monopole-monopole part of electrostatic forc
The crossover from exponential to algebraic tails is num
cally estimated. Comparison with experimental curves sho
that the linearized mean-field scheme is relevant. We p
out differences with the case where the colloidal suspen
is confined between two plates.

The latter discussion is postponed to Sec. VI, since i
performed in the lightning of the exact results abouthaa8
that are derived through Secs. II to V. However, Sec. VI
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written in a rather self-contained way and the reader
interested in formalism developments may skip Secs. II to

C. Methods

Before going into details, we summarize the gene
method displayed in Secs. II–IV. The Ursell functionhaa8
for the so-called primitive model~Sec. II A!, in the bulk as
well as near the wall, is studied from the Mayer diagramm
ics ~Sec. II B!. ~In the Mayer diagrams, the difference b
tween both situations is just that, in the second case, spe
densities depend on the distancex from the wall.! Integrals
corresponding to the Mayer diagrams diverge, because o
long range of the Coulomb potential far away from the w
as well as in its vicinity. Then systematic resummations
long-ranged Coulomb divergences similar to that perform
by Meeron for bulk quantities@13# provide diagrammatics
where there appears a screened potentialf ~Sec. II C!. ~Re-
summations rely on the same topological principles in b
cases.! In the bulk,f is a solution of the usual Debye equ
tion. Near the wallf obeys an ‘‘inhomogeneous’’ Deby
equation~25!, where the inverse screening length depends
x ~Sec. II D!. The large-distance behavior ofhaa8 can be
conveniently studied by the new reorganization of diagra
that we introduce in Sec. II E. In Sec. III A we give th
formal expression of the screened potential in the vicinity
the wall. ~It has been determined in Ref.@14# in a simpler
situation, namely, for an analogous screened potential
arises in a resummed fugacity Mayer expansion for the d
sity when all closest approach distancesba’s are equal to the
same value.! An analysis of the Fourier transform off
shows thatf decays asf f(x,x8)/y3 at large distancesy with
a constant sign~Sec. III B!. Two sum rules for*dyf(x,x8,y)
and f f(x,x8), respectively, are settled in Sec. III C. The
sum rules ensure that in the linearized mean-field appr
mationhaa8

LMF obeys the local electroneutrality sum rule~52!
and sum rule~4!. The sum rule satisfied byf f(x,x8) allows
one to derive its sign~6!. In Sec. IV we show, thanks to th
diagrammatic reorganization introduced in Sec. II E, that
polar structure~7! of the 1/y3 tail of f enforces that, when
all species have the same closest approach distance to
wall, the coefficient of the 1/y3 tail in the correlation func-
tion haa8 takes form~8! for any value of the coupling pa
rameter~temperature and bulk densities! in the fluid phase.
Technical details are given in the Appendix.

II. GENERAL FORMALISM

A. Primitive model

Our system is a three-dimensional charge fluid confined
the regionx.0 by a plane impenetrable dielectric wall, th
electrostatic response of which is taken into account b
dielectric constanteW . Up to Sec. V A included, the solution
is described by the usualprimitive model@15# with ns spe-
cies of charges. In this model every charged particle of s
cies a is represented as a hard sphere—with diame
sa—where the net chargeea[Zae is concentrated at the
center of the sphere.~We recall thate denotes the absolut
value of the electron charge andZa may be negative.! The
3-3
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extension of our results to the case where the charge of
species is uniformly spread on the surface of the hard-c
sphere is discussed in Sec. V B. In the primitive model
solvent~water! is handled with as a continuous medium wi
a uniform dielectric constantesolv. Moreover, particles are
assumed to be made of a material with the same diele
constant as the solvent. Therefore,e5esolv when x.0 and
e5eW whenx,0.

Since a half space is occupied by a dielectric mater
v(r ,r 8) in the Coulomb pair interaction (eaea8 /esolv)v(r ,r 8)
is solution of Poisson equation~2! with the adequate bound
ary conditions and it reads forx.0 andx8.0 @16#

v~r ,r 8!5
1

ur2r 8u
2Del

1

ur2r 8!u
~9!

with

Del[
eW2esolv

eW1esolv
. ~10!

In Eq. ~9! r 8! is theimageof the positionr 8 by the reflection
with respect to the plane interface between the solution
the dielectric material.A priori Del ranges from21 to 1. In
the case of a glass wall in contact with water,esolv;80,
while eW is equal to a few units; then the relative dielect
constanteW /esolv of the wall with respect to the solvent is o
order 1/80 andDel;20.98. In the bulk, far away from the
wall, the expression ofv(r ,r 8) is reduced to 1/ur2r 8u. The
hard-core interactionvSR between two speciesa and a8 is
infinitely repulsive at distances shorter than the sum (sa
1sa8)/2 of the sphere radii of both species:

bvSR~ ur2r 8u;a,a8!5H 1`, if ur2r 8u,~sa1sa8!/2

0, if ur2r 8u.~sa1sa8!/2.
~11!

In fact, as discussed at the end of Sec. IV, the specific fo
of vSR(ur2r 8u;a,a8) has no consequence upon results~6!–
~8!. The expression~11! could be replaced by a more gener
soft short-ranged repulsion, the range of which would be
the order of (sa1sa8)/2. In the primitive model defined jus
above, the total pair energyUpair reads

Upair5(
i , j

vSR~ ur i2r j u;a i ,a j !1
e2

esolv
(
i , j

Za i
Za j

v~r i ,r j !,

~12!

wherei is the index of a particle.
In the vicinity of the wall, one-body potentials appear

the total energy of the system. For every charge a self-en
Za

2(e2/esolv)Vself(x) arises from the work necessary to brin
a chargeZae from x51` ~in the solvent! to a pointr in the
vicinity of the wall. According to Eq.~9!, the wall electro-
static response is equivalent to the presence of an im
charge2DelZa(e/Aesolv) at point r!, and

Vself~x!52Del

1

4x
. ~13!
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As mentioned above, when the solvent is water and the w
is made of glass,Del defined in Eq.~10! is negative, and
Vself(x) is a repulsive potential. The impenetrability of th
wall corresponds to a short-ranged potential

bVSR~x;a!5H 1`, if x,ba

0, if x.ba,
~14!

whereba is the closest approach distance of the center o
particlea to the wall. The confinement of all particles to th
positive-x region and the electrostatic self-energy may
gathered into a one-body potentialVwall :

Vwall5(
i

VSR~xi ;a i !1
e2

esolv
(

i
Za i

2 Vself~xi !. ~15!

B. Generalized Mayer diagrams

The system at equilibrium at inverse temperatureb in a
finite volumeL can be studied in the grand canonical e
semble where each speciesa has a fixed fugacityza . The
grand canonical functionJ is defined by

J~b,$za%a51, . . . ,ns
,L!

5 (
$Na%a51, . . . ,ns

F)
a

za
Na

Na! G EL
F )

i 51

(aNa

dr i G
3e2b[Upair1Vwall] . ~16!

In Eq. ~16! Na is the total number of particles with speciesa
and ($Na%a51, . . . ,ns

denotes the summation over all possib

combinations ofns Na’s. Near the wall,L denotes a finite-
size region bounded by the wall on the left. In the bulk,L
stands for a finite-size region far away from the wall,v(r ,r 8)
is reduced to its bulk value andVwall does not appea
in Eq. ~16!.

In order to write a single formula forJ, whetherL lies
near the wall or in the bulk, we introduce a generaliz
fugacity that incorporates the one-body potential created
the wall, as we have already done in Ref.@14#. The general-
ized fugacity z̄a(x) depends only on the distancex to the
wall, and reads

z̄a~x!5zaexpF2bVSR~x;a!2
be2

esolv
Za

2Vself~x!G . ~17!

Moreover, the summation over theNa’s can be replaced by a
summation overN5(aNa with the result

J~b,$za%a51, . . .ns
,L!

5 (
N50

1`
1

N! EL
F )

n51

N

drnS (
an51

ns

z̄an
~xn!D Ge2bUpair.

~18!

We use the convention that whenN50 the integral is re-
duced to 1. Then the fugacity expansion of the density p
3-4
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file ra(x) can be represented by the generalized Mayer
grams where each pair of points labeled byn andm is linked
by at most one bond

f ~n,m!5expF2bS vSR~ urn2rmu;an ,am!

1
e2

esolv
Zan

Zam
v~rn ,rm! D G21. ~19!

In the integral associated with every diagram, each point
anx-dependent weightz̄a(x), which is summed over all spe
cies. Because of the long range of the Coulomb poten
every integral corresponding to a Mayer diagram that is
sufficiently connected diverges when the volumeL becomes
infinite—inside the bulk or on the right of the wall—
but systematic resummations remove these diverge
~see Ref.@14#!.

The density expansion ofhaa8 can also be expressed
terms of the Mayer diagrams with bonds~19! ~see, e.g., Ref.
@1# for the homogeneous case!. The general formula, wher
uniform densities are replaced by density profiles in
present case, is

haa8~x,x8,y!5(
G

1

SG
E

L
F )

n51

N

drnS (
an51

ns

ran
~xn!D G

3F) f G
G

. ~20!

In Eq. ~20! the sum runs over all unlabeled topologica
different connected diagramsG with two root points (r ,a)
and (r 8,a8) ~which are not integrated over! and N internal
points~which are integrated over! with N50, . . . ,̀ . A dia-
gramG is built according to the following rules. Each pair o
points in G is linked by at most onef bond, there is no
articulation point and every internal point has a weight eq
to (an51

ns ran
(xn). ~An articulation point is defined by the

fact that, if it is taken out of the diagram, then the diagram
split into two pieces, one of which at least is no longer link
to any root point.! @) f #G is the product of thef bonds in the
G diagram andSG is its symmetry factor, i.e., the number o
permutations of the internal pointsrn that do not change this
product. We have used the convention that, ifN is equal to 0,
no *drn@(an51

ns ran
(xn)# appears and (1/SG)@) f #G is re-

duced to f (r ,r 8). Similar to what happens for the Maye
diagrammatic representations of fugacity expansions for d
sity profiles, integrals in Eq.~20! diverge in the infinite vol-
ume limit, because of the long range of the Coulomb int
action. Then systematic partial resummations must
performed, as shown in the following subsection.

C. Systematic resummations of Coulomb divergences

The method that we use is a generalization of the pro
dure introduced by Meeron@13# to calculatehaa8 in the
bulk; the only difference is that point weights in the May
diagrams are nowx dependent. The starting trick is to sp
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the Mayer bond~19! into two auxiliary bonds: the ‘‘Cou-
lomb’’ bond f cc[2be2Zan

Zam
v(rn ,rm) and its complemen-

tary function f 2 f cc. Then subdiagrams containing chains
the Coulomb bondsf cc are resummed inside equivalenc
classes. The potentialf, which arises as the sum of chain
with all possible lengths made withf cc bonds, can be viewed
as the solution of the integral equation

f~r ,r 8!5v~r ,r 8!

2
be2

esolv
E

L
dr 9 (

a51

ns

Za
2ra~x9!v~r ,r 9!f~r 9,r 8!,

~21!

f(r ,r 8) is also the solution of another integral equatio
which is obtained from Eq.~21! by exchanging the roles ofr
andr 8. Equation~21! coincides with the equation obeyed b
a linearized mean-field approximation for the immersion fr
energy of two external charges@10#. It also coincides with
the equation obeyed by the linearized mean-field Ursell fu
tion 2b(e2/esolv)ZaZa8f @6,11#.

Topological considerations used by Meeron~and reformu-
lated in Refs.@17# for bulk correlations in quantum Coulom
fluids! lead to the following resummed diagrammatic rep
sentation ofhaa8 ,

haa8~x,x8,y!5(
P

1

SP
E

L
F )

n51

N

drnS (
an51

ns

ran
~xn!D G

3F) F G
P

. ~22!

DiagramsP are defined as diagramsG in the initial diagram-
matic representation~20! with only two differences. First, the
bond f is replaced by two resummed bondsF calledFcc and
FR with

Fcc~n,m!52
be2

esolv
Zan

Zam
f~rn ,rm! ~23!

and

FR~n,m!5expF2bS vSR~ urn2rmu;an ,am!

1
e2

esolv
Zan

Zam
f~rn ,rm! D G21

1
be2

esolv
Zan

Zam
f~rn ,rm!. ~24!

Second, in order to avoid double counting in the resumm
tion process, diagramsP must be built with an ‘‘excluded-
composition’’ rule: there is no point linked to the rest of th
diagram by only twoFcc bonds. As can be checked from th
properties derived in Sec. III, the screened potentialf is
integrable at large distances andP diagrams correspond to
convergent integrals in the limit where the volumeL extends
to infinity inside the bulk or on the right of the wall.
3-5
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FIG. 1. Representation ofhaa8
cc (r ,r 8) as the graph series defined in Eq.~31!. A wavy line represents a bondFcc and a gray disk stands

for a bondI. A couple of variables (r i ,g i) are associated with every circle. For a white circlea5(r ,a) @or a85(r 8,a8)], r anda are fixed,
whereas, for a black circlei 5(r i ,g i), r i andg i are integrated with the measure*dr i(a i

ra i
(r i).
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D. Screened potential

Since Coulomb potentialv(r ,r 8) for point charges is a
solution of Poisson equation~2!, integral equation~21!
which defines the screened potentialf can be turned into the
partial derivative equation

D rf~r ,r 8!2k̄2~x!f~r ,r 8!524pd~r2r 8!, ~25!

wherek̄2(x) is defined as

k̄2~x![4pb
e2

esolv
(
a

Za
2ra~x!. ~26!

The presence of the hard-core repulsion~14! from the wall
enforces thatra(x) vanishes forx,ba . Sincef arises as
the infinite sum of the Coulomb chains defined in Sec. II
f obeys the same boundary conditions as Coulomb pote
v. f(r ,r 8) tends to 0 whenur2r 8u goes to1`, it is con-
tinuous everywhere while its normal gradient times the
electric constant is continuous at the interface with dielec
walls. We recall that particles are supposed to be made
material with the same dielectric constant as the solvent

In the bulk, far away from any boundary,k̄(x) becomes a
constant equal to the inverse Debye screening lengthkD :

kD5A4pbe2

esolv
(
a

Za
2ra

B, ~27!

wherera
B is the bulk density of speciesa. Then Eq.~25! is

the usual Debye equation. Sincef in the bulk is a function
of ur2r 8u that vanishes whenur2r 8u goes to infinity, it is
equal to the well-known Debye potential

fD~ ur2r 8u!5
e2kDur2r8u

ur2r 8u
. ~28!

Near the plane dielectric wall located atx50, Eq.~25! is
an ‘‘inhomogeneous’’ Debye equation, where the inve
squared screening lengthk̄2 depends on the distancex from
the wall. The functionk̄2(x) has finite steps at pointsx
5ba with a51, . . . ,ns . f(r ,r 8) is continuous everywhere
and obeys the boundary condition

lim
x→02

eW

esolv

]f

]x
~r ,r 8!5 lim

x→01

]f

]x
~r ,r 8!, ~29!

wherex8Þ0. ]f/]x(r ,r 8) is continuous at everyba when
rÞr 8.
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E. Reorganization of resummed diagrammatics

In the absence of any compensation mechanism,
Ursell functionhaa8 is expected to decay at large distanc
as the slowest bond in its resummed diagrammatic repre
tation~22!, namely, asFcc. @FR falls off as the squared tail o
Fcc by virtue of ~23! and~24!.# In order to analyze the large
distance behavior ofhaa8 , we proceed to the following dia
grammatic reorganization.

In a first step, we reorganize the resummed Mayer d
grammatics~22! for haa8 into a sum of graphs built with the
bondFcc and with the bondI defined as the sum of all sub
diagrams that either contain noFcc bond or remain con-
nected in a single piece when anyone among itsFcc bonds is
cut. ~In the following, we use the word ‘‘graph’’ for an objec
built with Fcc andI bonds, and we keep the term ‘‘diagram
for a resummed Mayer diagram made ofFcc andFR bonds.!
Since the reorganization is purely topological, it is valid f
correlations in the bulk as well as in the vicinity of the wa

The reason for this first reorganization is that the topolo
of subdiagrams involved inI has the following consequence
If Fcc decays algebraically in some direction,FR decreases
as the square of the decay law ofFcc in the same direction,
and so doesI. ~A similar property has already been used
Refs.@18# and @19# for the investigation of algebraic decay
in quantum bulk correlations.! If Fcc falls off exponentially
fast at large distancesur2r 8u, thenI decays faster thanFcc at
least in weak-coupling and high-dilution regimes.~The latter
case will be investigated in detail in a forthcomin
paper@12#.!

In a second step, four classes of graphs in this new r
resentation ofhaa8(ra ,ra8) are distinguished by considerin
whether a single bondFcc is attached either to root poin
(ra ,a) or to root point (ra8 ,a8). According to the excluded-
composition rule obeyed by resummedP diagrams,haa8
can be rewritten as the sum

haa8[haa8
cc

1haa8
c2

1haa8
2c

1haa8
22 , ~30!

where the functions on the right hand side of Eq.~30! are
equal to the graph series represented in Figs. 1–3 res
tively. @In the following a (a8) is a short notation for the
couple of variables (r ,a) @(r 8,a8)# associated with a roo
point, c represents (r c ,g), and i stands for (r i ,a i).# The
analytical definitions of the series are
n
FIG. 2. Graphic representatio
of definition ~32! for haa8

c2 (r ,r 8).
3-6
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haa8
cc

~r ,r 8![Fcc~a,a8!1E dr1dr18 (
g1 ,g18

rg1
~r1!rg

18
~r18!

3Fcc~a,1!I ~1,18!Fcc~18,a8!

1E dr1dr18 (
g1 ,g18

rg1
~r1!rg

18
~r18!

3E dr2dr28 (
g2 ,g28

rg2
~r2!rg

28
~r28!

3Fcc~a,1!I ~1,18!Fcc~18,2!I ~2,28!Fcc~28,a8!

1•••, ~31!

haa8
c2

~r ,r 8![E dr c8(
g8

rg8~r c8!F
cc~a,c8!I ~c8,a8!

1E dr c8(
g8

rg8~r c8!E dr1dr18 (
g1 ,g18

rg1
~r1!

3rg
18
~r18!Fcc~a,1!I ~1,18!Fcc~18,c8!I ~c8,a8!

1•••, ~32!

while h2c is defined in a symmetric way, and

haa8
22

~r ,r 8![I ~a,a8!

1E dr cE dr c8 (
g,g8

rg~r c!rg8~r c8!I ~a,c!

3Fcc~c,c8!I ~c8,a8!

1E dr cE dr c8 (
g,g8

rg~r c!rg8~r c8!

3E dr1dr18 (
g1 ,g18

rg1
~r1!rg

18
~r18!I ~a,c!

3Fcc~c,1!I ~1,18!Fcc~18,c8!I ~c8,a8!1•••.

~33!

We notice thatI is the analog of the so-called single-partic
irreducible function in the Feynman diagrammatics for t
two-point propagator of an equivalent field theory~see, e.g.,
Ref. @20#!.

III. PROPERTIES OF THE SCREENED POTENTIAL

In order to take advantage of the invariance along
directions parallel to the wall, we introduce the Fourier tra
form with respect to they variable, and we write
FIG. 3. Graphic representatio
of definition ~33! for haa8

22(r ,r 8).
02613
e
-

f~x,x8,y!5E d2k

~2p!2
e2 ik•yf~x,x8,k!. ~34!

After Fourier transformation~25! becomes the linear differ
ential equation

H ]2

]x2
2k22k̄2~x!J f~x,x8,k!524pd~x2x8!. ~35!

In the following, we assume that the species are labeled
such a way thatbmin5b1,b2,•••,bns

5bmax. k̄2(x) and its

first derivative are continuous in each intervalbi,x,bi 11
~with the conventionbns1151`) and have only finite steps

at everybi .

A. Formal expression off

The explicit resolution of the inhomogeneous Deb
equation~35! requires one to distinguish several regions. F
our discussion we need to consider only four regions: reg
I for x,0, region II for 0,x,bmin , region III for bmin
,x,bmax, and regionIV for bmax,x. The results summa
rized in the present subsection are a generalization of th
derived in more detail for a similar but simpler equation
Ref. @14#.

In the above regionsI andII , k̄2(x) vanishes by virtue of
Eq. ~26!. Whenx8.bmin Eq. ~35! reads

H ]2

]x2
2k2J f~x,x8,k!50 if x,bmin. ~36!

The solution with boundary conditions recalled after Eq.~26!
@in particular, condition~29!# is

f~x,x8,k!5A~x8,uku!~12Del!e
ukux if x,0~x8.bmin!

~37!

and

f~x,x8,k!5A~x8,uku!@eukux2Dele
2ukux#

if 0 ,x,bmin ~x8.bmin!. ~38!

@In Ref. @14# there is a sign misprint in Eq.~4.20!, which has
to coincide with Eq.~38!.#

When bothx.bmin andx8.bmin , d(x2x8) does not van-
ish for everyx. The explicit solution forf(x,x8,k) is ob-
tained by distinguishing the subregions separated by
planesx5bi . Let us call~i! the subregionbi,x,bi 11 ~with
bns11[1`). Whenx varies in subregion (i ), h( i ) denotes
the continuous solution of the ‘‘homogeneous’’ equation
sociated with equation~35!—namely, the equation withou
the Dirac distribution term—and extended to the range2`
,x,1`,
3-7
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H ]2

]x2
2k22k̄2~x!J h( i )~x,k2!50. ~39!

In Eq. ~39! only speciesa51, . . . ,i do contribute tok̄2(x)
defined in Eq.~26!. The general solution of Eq.~35! for x in
subregion~i! andx8 in subregion (i 8) is the sum of a linear
combination of two independent solutionsh( i )

1 andh( i )
2 plus,

if ( i )5( i 8), a particular solutionfsing(i ) of Eq. ~35!, which is
singular whenx5x8 and which is calculated in terms ofh( i )

1

andh( i )
2 by the so-called Wronskian method@21#. In the fol-

lowing, h( i )
1 (h( i )

2 ) is chosen to be a solution that vanish

~diverges! whenx tends to1`. ~In the bulk,k̄(x) is a con-
stant equal to the inverse Debye lengthkD : h1 andh2 can
be chosen to be equal to exp@7xAkD

2 1k2#.! Since
f(x,x8,k) also obeys a second equation given by Eq.~35!
where the roles ofx andx8 are exchanged@see the commen
after Eq.~21!#, f(x,x8,k) for x in subregion~i! and forx8 in
subregion (i 8) is equal to

f~x,x8,k!5d i ,i 8fsing(i )~x,x8,k2!

1 (
«51,2

(
«851,2

Z( i i 8)
««8 ~ uku!

3h( i )
« ~x,k2!h( i 8)

«8 ~x8,k2!. ~40!

The coefficientsZ( i i 8)
66 are determined by the continuity o

f(x,x8,k) at the planes x5b1 , . . . ,bns
and x8

5b1 , . . . ,bns
, the continuity of ]f(x,x8,k)/]x and

]f(x,x8,k)/]x8 at the same planes, and the vanishing
f(x,x8,k) when x or x8 goes to infinity. When bothx
.bmax and x8.bmax, namely, whenx and x8 are in region
IV, the vanishing off(x,x8,k) at large distancesx and x8
enforces a simpler expression,

f IV~x,x8,k!5fsingIV~x,x8,k2!

1ZIV~ uku!hIV
1 ~x,k2!hIV

1 ~x8,k2!

if x.bmax and x8.bmax ~41!

with

fsingIV~x,x8,k2!52
4p

WIV~k2!
hIV

2 ~ inf~x,x8!,k2!

3hIV
1 ~sup~x,x8!,k2!, ~42!

where inf(x,x8) @sup(x,x8)# is the infimum~supremum! of x
andx8 andWIV(k2) is the Wronskian of solutionshIV

1 (x,k2)
and hIV

2 (x,k2) defined as WIV(k2)5hIV
2 (]hIV

1 /]x)
2hIV

1 (]hIV
2 /]x).

B. Small-k expansion off

The small-k expansions ofZIV(uku) and of the various
otherZ( i i 8)

66 (uku)’s defined in Eq.~40! involve odd powers of
uku, whereas other functions ofk in f proves to be functions
02613
f

of k2 @see Eq. ~40!–~42!#. Indeed, ZIV(uku) and every
Z( i i 8)

66 (uku) are determined by the ratio of the boundary equ
tions obeyed byf, ]f/]x, and]f/]x8 at the various planes
x5bi andx85bi 8 , while thex dependence off in regionsI
and II involves the functions exp(ukux) and exp(2ukux) @see
Eqs.~37! and ~38!#.

We stress that the existence of odd powers ofuku in the
small-k expansion off(x,x8,k) is not specific to the particu
lar form ~14! of VSR(x;a). It arises through the boundar
conditions from the vanishing of the densities in regionx
,0 with a corresponding solution that takes the functio
form ~37!.

Moreover, the coefficientBZIV

[1] of uku in the small-k ex-

pansion ofZIV(uku) does not vanish wheneW is finite,

ZIV~ uku!5ZIV~k50!1ukuBZIV

[1] 1O~k2!, ~43!

and we expect that the same is true for every nonvanish
Z( i i 8)

66 (uku). @In Eq. ~43! O(k2) denotes a term of orderk2.#
Property~43! can be checked from the expansions at the fi
two orders in the Coulomb coupling parameter in the c
where allba’s are equal to the same valueb @12#. For the
sake of pedagogy, we give here the expression off at lead-
ing order in the weak-coupling regime@14# whenx.b and
x8.b,

f IV
(0)~x,x8,k!5

2p

AkD
2 1k2

e2ux2x8uAkD
2

1k2

1ZIV
(0)~ uku!e2(x1x8)AkD

2
1k2

~44!

with

ZIV
(0)~ uku!5

2p

AkD
2 1k2

e2bAkD
2

1k2

3
kD

2 2Dele
22buku~AkD

2 1k21uku!2

~AkD
2 1k21uku!22Dele

22bukukD
2

. ~45!

These expressions have been derived in the caseDel50 and
b50 in Ref.@6# and in the caseDelÞ0 andb50 in Ref.@7#.
@We notice thatb can be set to 0 only when the electrosta
response of the wall is repulsive@11#, namely, wheneW
,esolv (Del,0).# Explicit calculations in confined geom
etries are done in Ref.@8#. All these leading-order result
correspond to uniform density profiles in the regionx.b.

As a consequence of Eqs.~37!, ~38!, ~40!, and ~43!, the
small-k expansion off also contains auku-term,

f~x,x8,k!5f~x,x8,k50!1ukuBf
[1]~x,x8!1O~k2!,

~46!

whereBf
[1] (x,x8) takes different forms whenx andx8 are in

regions I ,II ,III ,IV, respectively.Bf
[1] (x,x8) is continuous

everywhere as f(x,x8,k) is. The discontinuity of
]f(x,x8,k)/]x at x5x8 is given by the partfsing(x,x8,k2)
in f(x,x8,k). Henceforth]Bf

[1] (x,x8)/]x is continuous at
3-8
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x5x8, and the continuity of]f(x,x8,k)/]x at the various
planes x5bi when x5” x8 implies the continuity of
]Bf

[1] (x,x8)/]x at everyx5bi . Moreover,Bf
[1] (x,x8) van-

ishes whenx or x8 goes to1`, asf(x,x8,k) does.
The fact that the small-k expansion of the Fourier trans

form of f(x,x8,y) contains some terms that are not analy
in the Cartesian components ofk signals the existence o
algebraic tails in the large-y behavior off(x,x8,y). Since
the nonanalytic term with the lowest order in powers ofuku is
proportional touku5Ak1

21k2
2 ~wherek1 andk2 are the Car-

tesian components ofk), the slowest algebraic tail decays
1/y3. Its coefficient reads~see p. 363 of Ref.@22#!

f~x,x8,y! ;
uyu→1`

f f~x,x8!

uyu3
~47!

for x.bmin andx8.bmin with

f f~x,x8!52
1

2p
Bf

[1]~x,x8!, ~48!

1/y3 tails have also been exhibited in expressions forf (0) in
various confined geometries@8#.

According to Eq. ~41!, Bf IV

[1] (x,x8) has the factorized

structure

Bf IV

[1] ~x,x8!5BZIV

[1] hIV
1 ~x,k250!hIV

1 ~x8,k250!

if x.bmax and x8.bmax. ~49!

@We notice that, sinceh1(x,k250) is a solution of Eq.~39!,
which tends to zero whenx goes to infinity,h1(x,k250) has
the same sign for anyx.#

More generally, whenx and x8 are in regionsIII or IV
Bf

[1] (x,x8) has an expression given by Eq.~40! whereZ( i i 8)
66

is replaced byB
Z

( i i 8)
66

[1]
and k2 is set equal to 0. Since

h1(x,k250) and h2(x,k250) are solutions of Eq.~39!,
f f(x,x8), defined forx.bmin andx8.bmin and proportional
to Bf

[1] (x,x8) @see Eq.~48!#, obeys the following equation:

]2f f~x,x8!

]x2
5k̄2~x! f f~x,x8!. ~50!

Moreover, for any givenx8.bmin , f f(x,x8) vanishes at
large positivex, as it is the case forBf

[1] (x,x8). As a conse-
quence, for any givenx8, f f(x,x8) has the same sign fo
everyx.bmin . The result also holds when the roles ofx and
x8 are exchanged. Therefore,f f(x,x8) has the same sign fo
any x or x8 larger thanbmin , as written in Eq.~6!.

C. Repulsive nature of the 1Õy3 tail of f

Now, in order to determine the sign off f(x,x8), we show
that f(x,x8,k50) obeys a sum rule, as well asf f(x,x8).
These sum rules hold for any solution of Eq.~35! with
boundary conditions recalled after Eq.~26!, whatever the
function k̄2(x) with finite steps may be.
02613
First, the sum rule forf(x,x8,k50) reads

E
0

`

dxk̄2~x!f~x,x8,k50!54p if x8.bmin . ~51!

~We notice that the lower bound 0 of the integral in Eq.~51!

can be replaced bybmin , becausek̄2(x) vanishes in the range
0,x,bmin .) The derivation of Eq.~51! is the following.
f(x,x8,k50) obeys Eq. ~35! with k250, and
]f(x,x8,k)/]x vanishes whenx goes to infinity for anyk.
Moreover, forx8.bmin ]f(x,x8,k50)/]x at x501 is given
in terms of the same derivative atx502 by boundary con-
dition ~29!. ]f(x,x8,k50)/]x vanishes forx,0, by virtue
of the explicit expression~37!, which is valid for anyk̄2(x),
and so does]f(x,x8,k50)/]x at x501.

We notice that in a linearized mean-field approximati
haa8(x,x8,y) can be replaced byFcc52beaea8f(x,x8,y).
Sum rule~51! implies that this approximated expression f
haa8(x,x8,y) does obey the local-electroneutrality sum ru
satisfied by the exacthaa8(x,x8,y),

ea52E dr 8(
a8

ea8ra8~r 8!haa8~r ,r 8!. ~52!

~See Ref.@5# for a review of the sum rules.!
The sum rule forf f(x,x8) arises from similar arguments

By virtue of Eq.~50! and since] f f(x,x8)/]x vanishes when
x goes to infinity@sinceBf

[1] (x,x8) vanishes as well asf at
largex],

E
bmin

`

dxk̄2~x! f f~x,x8!52
] f f~x,x8!

]x U
x5b

min
1

. ~53!

The rhs of Eq.~53! is determined by the fact thatf f(x,x8) is
proportional toBf

[1] (x,x8) in regionsIII andIV by virtue of
Eq. ~48!. Bf

[1] (x,x8) is defined everywhere through Eq.~46!
and its partial derivative with respect tox is continuous at
x5bmin . The explicit solution~38! for f(x,x8,k) whenx is
in region II andx8.bmin exhibits the following property,

]Bf
[1]~x,x8!

]x
5

eW

esolv
f~x,x8,k50! if 0 ,x,bmin~x8.bmin!.

~54!

@When x and x8 are in the range specified in Eq.~54!,
f(x,x8,k50) is independent ofx and relation~54! has its
root in the boundary conditions forf at x50.# Since
f(x,x8,k) is continuous atx5bmin for any value ofk, the
rhs of Eq. ~53! is equal to 1/(2p) times
(eW /esolv)f(x,x8,k50)ux5b

min
1 . According to first sum rule

~51!, the integration ofk̄2(x8) times Eq.~53! leads to the
second sum rule

E
bmin

`

dxE
bmin

`

dx8k̄2~x!k̄2~x8! f f~x,x8!52
eW

esolv
. ~55!

We notice that, ifhaa8(x,x8,y) is again approximated by
the bondFcc52beaea8f(x,x8,y), then Eq.~55! implies
3-9
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that the corresponding approximation2beaea8 f f(x,x8) for
the coefficient 2b f aa8(x,x8) of the 1/y3 tail of
haa8(x,x8,y) does obey sum rule~4!.

Since f f(x,x8) has the same sign for anyx or x8 larger
thanbmin and obeys sum rule~55! wherek̄2(x) and k̄2(x8)
are positive, we conclude that

f f~x,x8!.0. ~56!

In other words, for any functionk̄2(x), the 1/y3 tail of the
screened potentialf(x,x8,y) is repulsive at all distancesx
andx8 ~larger thanbmin).

D. Factorization of the 1Õy3 tail of f

When x and x8 are larger thanbmax, f f(x,x8) has the
factorized structure given by Eqs.~48! and~49!. BZIV

[1] has the

same sign asBf IV

[1] (bmax,bmax). Bf IV

[1] (bmax,bmax),0 by virtue

of Eq. ~48! and of the positive sign off f(x,x8) for anyx and
x8 @see Eq.~56!#. As a consequence, forx andx8 larger than
bmax, the 1/y3 tail of f(x,x8,y) has the dipolar structure
written in Eq.~7!, whereD̄f(x) is defined up to an arbitrary
sign «,

D̄f~x!5«A~2BZIV

[1] !

2p
hIV

1 ~x,k250!, ~57!

D̄f(x) has the same sign for anyx, as well ashIV
1 (x,k2

50).

IV. CORRELATIONS AT LARGE DISTANCES ALONG
THE WALL

A. 1Õy3 decay of correlations

The leadingf f(x,x8)/y3 tail of the screened potentialf,
where f f(x,x8) is integrable, induces the same power-la
decay for the Ursell functionhaa8 . The argument is the fol-
lowing. Sincef falls off as 1/y3 at large distancesuyu, bonds
Fcc andFR in resummed Mayer diagrams decay as 1/y3 and
1/y6, respectively, according to Eqs.~23! and~24!. In graph
decomposition~30! of haa8 where bonds areFcc and I, the
topology of diagrams involved inI implies thatI decays at
large distancesy at least as 1/y6 ~see Sec. II E!. Then, in the
series representations ofhaa8

cc , haa8
2c , haa8

c2 andhaa8
–– shown

in Figs. 1–3, every term, exceptI, has 1/y3 tails arising from
all Fcc bonds in the series.

Indeed, all graphs in Figs. 1–3 are chain graphs, so
their leading algebraic tail must be determined as follow
Because of the translational invariance in the direction p
allel to the wall, graphs in Figs. 1–3 can be seen as mult
convolutions with respect to the variabley, which are inte-
grated over everyx variable with a weightw(x). The Fourier
transform in directiony of a single convolution takes th
form

C~x,x8,k![E dx9 f ~x,x9,k!w~x9!g~x9,x8,k!. ~58!
02613
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If f (x,x9,y) decays as 1/y3, whereasg(x9,x8,y) falls off
faster than 1/y3, then the term in thek expansion of
C(x,x8,k) that is nonanalytic in the components ofk at the
lowest order in powers ofuku comes from the correspondin
term ukuBf

[1] (x,x9) in the k expansion off (x,x9,k) and is
equal to

uku E dx9Bf
[1]~x,x9!w~x9!g~x9,x8,k50!. ~59!

Then, the formula already used to get Eqs.~47! and ~48!
from Eq. ~46! leads to

C~x,x8,y! ;
uyu→1`

2
1

2p

1

uyu3
E dx9Bf

[1]~x,x9!w~x9!

3g~x9,x8,k50!. ~60!

When both f and g behave as 1/y3, the k expansion of
C(x,x8,k) involves two nonanalytic terms at orderuku and
the integral in Eq.~60! is replaced by

E dx9Bf
[1]~x,x9!w~x9!g~x9,x8,k50!

1E dx9 f ~x,x9,k50!w~x9!Bg
[1]~x9,x8!. ~61!

The argument can be generalized to a convolution involv
several functions that all decay as 1/y3. ~Similar consider-
ations for convolutions of algebraically decaying functio
have already been displayed in Ref.@19#.!

B. Dipolar structure of the 1Õy3 tail

The formal structure of the 1/y3 tail of the Ursell function
haa8(x,x8,y) can be derived by using decomposition~30!
together with the fundamental properties~60! and ~61!. Let
us callhm

••(x,x8,y,a,a8) the graph withm bondsFcc in the
representations of eitherhcc, hc2, h2c or h22 exhibited in
Figs. 1–3. According to Eq.~61!, the various 1/y3 tails of
every graphhm

•• are determined by replacing one of the bon
Fcc by its 1/y3 behavior at largey, whereas the other part o
the graph is replaced by its Fourier transform at the va
k50 ~while integrations over variablesx’s are left un-
changed!.

As a consequence, as shown in Appendix, when all s
cies have the same closest approach distance to the wal
dipolar structure~7! of the 1/y3 tail of the screened potentia
f(x,x8,y) induces thathaa8(x,x8,y) also has a dipolar
structure~8! with

Da~x!5
e

Aesolv

$Za@D̄f~x!1C̄c2~x!#1Ca
22~x!%, ~62!

where C̄c2(x) and Ca
22(x) are defined in Eqs.~A10! and

~A6!, respectively. The term in braces in Eq.~62! can be
rewritten as
3-10
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ZaD̄f~x!1E dr 9(
g9

rg9~x9!Zg9D̄f~x9!@hag9
c2

~r ,r 9!

1hag9
22

~r ,r 9!#. ~63!

In the weak-coupling limit, only a finite number of re
summed Mayer diagrams contribute to the coefficientDa .
The calculation performed up to the first-order correction
the forthcoming paper@12# shows that the latter coefficien
does not vanish.

We stress that results~6!–~8! are valid for species with
various excluded-volume sizes. Indeed, if all species h
not the same hard-core size, the difference appears in
short-ranged potentialsvSR(ur2r 8u;a,a8) and VSR(x;a),
which describe repulsive pairwise interactions and the
penetrability of the wall, respectively. According to its de
nition ~21!, the potentialf(r ,r 8) may depend onvSR(ur
2r 8u;a,a8) andVSR(x;a) only through the explicit expres
sion of k̄2(x). The generic properties of the coefficie
f f(x,x8) derived in Sec. III rely only on the positive sign o
k̄2(x) and on the boundary conditions obeyed byf. Besides,
the detailed form ofvSR(ur2r 8u;a,a8) involved in bondFR
never comes up in the discussion of the structure of corr
tions at large distancesy.

We recall that, as stressed in Sec. III B, the existence
f f(x,x8)/y3 tail for f(x,x8,y) does not depend on the sp
cific form of VSR(x;a) as long ask̄2(x) vanishes whenx
,0. By virtue of the same argument as that used in previ
paragraph, the generic properties of the latter tail, as we
the subsequent property~8! for the 1/y3 tail of haa8(x,x8,y),
are valid even ifVSR(x;a) is a soft repulsive potential in
stead of hard-core repulsion~14!.

V. GENERALIZATION OF PREVIOUS RESULTS

The main results~6!–~8! namely, the repulsive nature o
the 1/y3 tail of f, which is always true, and the dipola
structures of the 1/y3 tails of f andhaa8 , which arise only
in some cases, also hold in the following different situatio

A. Wall with surface charge

If the wall carries an external surface charge, by virtue
the superposition principle for solutions of the Poisson eq
tion, one can choose to write the total electrostatic energ
the sum of two contributions: on one hand the one-bo
interactions of all fluid charges with the electrostatic pote
tial created by the external charge on the wall and by
electrostatic response of the wall, and on the other hand C
lomb pair interactions~9!, which take into account the elec
trostatic response of the wall, but which are independen
the external charge. It can be shown, as detailed in a fo
coming paper, that some generalized Mayer diagrams ca
introduced as in Sec. II.~The effect of the surface charge
dealt with thanks to a generalized fugacity in a way simi
to what is done for the electrostatic response of the glass
in Ref. @14#.! Then the density profiles can be studied. In t
Mayer representation of the Ursell function, an auxiliary p
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tential f, which obeys the inhomogeneous Debye equat
~25!, appears after systematic resummations of the Coulo
divergences.

The resummed electrostatic potentialf obeys the same
boundary conditions as the Coulomb pair interaction@see Eq.
~21!#, and these conditions are independent of the exte
charge. Henceforth, in the determination off the existence
of the wall surface charge comes up only in the equat
obeyed byf, where it arises in the functionk̄2(x) through
density profiles@see Eq.~26!#. The whole argument devel
oped through Secs. III and IV is valid. Indeed, only the po
tive sign ofk̄2(x) and the boundary conditions obeyed byf
do matter in the proof of the repulsive nature~6! of the 1/y3

tail of the screened potentialf, while dipolar structures~7!

and~8! are not altered by the precise form ofk̄2(x). There-
fore, these results hold in the presence of an external sur
charge on the wall.

B. Beyond point charges

If some species, for instance,a5ns , are made of colloi-
dal spherical particles, one has to take into account not o
its mesoscopic excluded-volume size~already incorporated
in the primitive model! but also the fact that its charge is n
concentrated at the center of the particle but spread on
surface. The microscopic Coulomb potential between t
species coincides with expression~9! only for relative dis-
tancesur2r 8u larger than the sum of their radii. Since th
integral equation~21! obeyed byf(r ,r 8) does not involve
the short-ranged pairwise potentialvSR(ur2r 8u;a,a8) but
only the electrostatic interactionv(r ,r 8), it describes re-
summed interactions betweenpenetrablespheres with uni-
form surface charges spread on them fora5ns and point
charges for other species.

Then the solution forf in the bulk is no longer Eq.~28!.
However, its largeur2r 8u behavior is expected to take th
Debye form~28! with a ‘‘geometric’’ corrective factor, as it
is the case for the largeur2r 8u decay of the bulk effective
interaction between twoimpenetrablespheres with uniform
surface charges@see, e.g., Ref.@24# for a detailed calculation
of the expression recalled in Eq.~65!#. Similarly, the solution
in the vicinity of the wall is also altered by the fact that som
charges are distributed uniformly over spheres.

The resolution of the corresponding problems for pe
etrable spheres~in the bulk or near the wall! is far beyond the
scope of the present paper. However, wheny is large with
respect of the size of spherical charges, the monop
monopole part ofv(r ,r 8) yields the leading tail in their ef-
fective screened interactions, and functional forms~6! and
~7! of the large-y behavior of f(x,x8,y) should not be
changed.

VI. EXPERIMENTS WITH COLLOIDS

Most colloidal particles acquire a charge either from s
face charge groups or by specific adsorption from an elec
lytic solution. We callZcole the bare solvated~or ‘‘struc-
tural’’ ! charge, which arises from the intricate mechanism
solvatation. In the past decade colloidal suspensions h
3-11
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been widely studied experimentally, in particular, becau
apart from their numerous industrial applications, they c
be seen as model systems for structural phase transition

It is well known that the effective interactionucol col
B be-

tween two isolated colloidal particles in the bulk is we
mimicked by the DLVO ~Derjaguin-Landau-Verwey-
Overbeek! potential@23#. ~In the following, the superscriptB
will denote bulk quantities.! When colloids are separated b
more than a few screening lengths, the screened Coul
interaction between the two uniformly charged sphe
dominates the other contribution in the DLVO interactio
The latter Coulomb interaction is calculated in a lineariz
mean-field approximation@24# ~namely, linearized Poisson
Boltzmann theory! and the result at relative distancesy large
with respect to the screening length and the charge s
yields the formula recalled in Eq.~65!.

A. Sketch of the debate

From the experimental point of view, the main advanta
of colloids is that their mesoscopic size allows one to tra
the motion ofeverycolloidal sphere with a conventional op
tical microscope and a video camera. Thus, the correla
hcol col can be experimentally assessed for colloids when t
are far away from the vessel walls or when they are confi
between two glass plates or in the vicinity of a single pla
surface.~See references quoted in Ref.@4#.!

In particular, in 1997 Larsen and Grier experimenta
determined the correlationhcol col between dilute negatively
charged polystyrene sulphate spheres optically trapped a
same distancex from a glass wall with some negative char
on its surface@2#. Since colloids are dilute in the experimen
wcol col defined in Eq.~1! is expected to coincide, in fac
with the effective interaction for an isolated pair, name
with the immersion free energy of two isolated colloidal pa
ticles in a bath made of ions.~We recall thatwcol col is a
statistical average performed over microscopic configu
tions of both microscopic ions and many colloidal particle
whereas the immersion free energyucol col of two colloidal
spheres arises from averaging only over counterion confi
rations.! The authors claimed that the corresponding eff
tive pairwise interactionucol col(x,x8,y) between mesoscopi
like charges at the same distancex5x8 from the wall was
attractive at large relative distancesy.

However, theoretical works devoted to the effective int
action ucol col between two isolated colloids predicted th
ucol col is repulsive not only in the bulk but even in a co
fined geometry.@These works involve mean-field~Poisson-
Boltzmann! theories@25# or local density functional approxi
mations where correlations are included in a local fr
energy term@26#.# Theoretical results about the repulsiv
nature ofucol col were supported by a second experiment
the vicinity of a single charged glass wall published in 20
by Behrens and Grier@27#. In the experiment, denser silic
spheres are confined at a fixed distance from the wall by
balance between gravity and the electrostatic repulsion
erted by the surface charge on the wall. Colloidal partic
are not dilute, and oscillations inwcol col, the depth of which
depends on the colloid density, appear over a length s
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equal to a few nearest-neighbor distances. Behrens and G
argued that the observed oscillations should be ascribed
mere crowding effect commonly seen in liquids even wh
the electrostatic part of the immersion free energy of an i
lated pairucol col is repulsive.

Eventually, Squires and Brenner@3# argued that the attrac
tion determined in the first experiment@2# could be ac-
counted for by a nonequilibrium effect: the measured qu
tity was, in fact, the sum of the repulsive equilibrium fre
energyucol col and an attractive phenomenological attracti
ucol col

hyd , which results from hydrodynamic flows excited b
the spheres retreat from the charged wall, whose charge
the same sign as that of colloids.

However, attraction between like charges has also b
observed in experiments with colloidal suspensions confi
between two charged walls, and in the latest ones@4#, which
involve experimental methods similar to those used in Re
@2# and@27#, Han and Grier have checked the absence of
hydrodynamical effect. Therefore, an open question is: in
absence of any hydrodynamical effect, might confinem
combined with many-body effects mediated by colloids
ions result into an attractive effective pairwise interacti
wcol col or ucol col in some range of distances?

B. Experiment about dilute colloids in the vicinity
of a single wall

In the present section we revisit the case of the vicinity
a single wall studied in Ref.@2# in the light of our results
about statistical mechanics of charge fluids. In the exp
ment of Ref. @2#, the diameter of polystyrene sulpha
spheres isscol50.652mm, and the mean intercolloid dis
tanceacol is greater than 25mm. At room temperatureT, the
Bjerrum lengthl[be2/esolv ~closest approach distance b
tween like-charge ions with mean kinetic energy 1/b) is l
57 1024 mm. The absolute valueuZcolu of the bare solvated
charge in electron-charge units is estimated to be m
smaller than 105, which is the number of ionizable sulpha
groups chemically bound to its surface before solvatati
because not all sulphate groups dissociate.

The correlationhcol col between colloidal particles is mea
sured at distancesx159.561.0 mm and x252.560.5 mm
for relative distancesy, which vary from 2.3mm to 7 m m.
wcol col at x1 is always repulsive, whereas atx2 it becomes
attractive for distancesy>yinv52.5 mm.

Colloids are dilute enough for the parameterscol /acol to
be small (scol /acol,0.03). Thus we expect that, in the rang
of investigatedy’s, which are indeed larger than the collo
diameterscol , the functional form ofwcol col(x,x8,y) is de-
termined only by interactions different from the hard-co
repulsion. We recall that this is not true in the experiment
Ref. @27# where the ratioscol /acol takes the high value 0.5
Then, because of crowding effects, the dependance
wcol col(x5x8,y) upon the relative distancey has oscillations
with a period equal to the nearest-neighbor distance 2scol up
to y of order 8scol @see the comment after Eq.~1!#.

1. Effective electrostatic interaction in the bulk

In the bulk, when the relative distancey between colloids
is larger than the screening lengthkB

21 , we expect that the
3-12
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effective pairwise interaction is dominated by the Coulom
forces and, wheny is also large with respect to the colloi
radius, it takes the Debye form

wcol col
B ~y! ;

~kB
21,scol),y

@Zcol
eff Be#2

esolv

e2kBy

y
. ~64!

The difference betweenZcol
eff B and the ‘‘bare’’ solvated charge

Zcol defined at the beginning of Sec. VI arises from the co
bination of many-body effects~linked to the Coulomb cou-
pling and short-ranged repulsions! with the steric effect due
to the fact that the charge is not concentrated at a point b
spread over a sphere.

When colloids arevery dilute, many-body interactions be
tween colloids become negligible andwcol col tends to the
immersion free energyucol col of an isolated pair of colloids
where many-body effects are only due to interactions me
ated by ions. Since functional form~64! of wcol col

B (y) in-
volves size effects only in the parametersZcol

eff B and kB ,
ucol col

B (y) has the same functional form aswcol col
B (y), where

kB is replaced bykB
ion , the inverse screening length creat

by ions, andZcol
eff B is replaced byZcol

eff B ion .
In the DLVO approximation, which is usually used fo

ucol col
B in order to interpret experiments with colloids,kB

ion is
approximated by the inverse ionic Debye lengthkD

ion , while
the effective chargeZcol

eff B ion is approximated byZcol
DLVO ,

ucol col
B DLVO~y! ;

~1/kD
ion,scol),y

@Zcol
DLVOe#2

esolv

e2kD
iony

y
. ~65!

In Eq. ~65! kD
ion is defined as in Eq.~27! with the summation

restricted to ionic species, andZcol
DLVO is equal toZcol times a

‘‘geometric’’ factor @24#:

Zcol
DLVO5Zcol

ekD
ionscol/2

11~kD
ionscol/2!

. ~66!

We notice that, as a result of the strong electrostatic coup
between microions and the macroscopic charge of a col
in the vicinity of the colloid surface, nonlinearities and m
croion correlations can dramatically reduceZcol

eff B ion with re-
spect to the bare solvated valueZcol ~see, e.g., Ref.@28#!.
When the structural chargeZcol increases,Zcol

eff B ion may even
tend to a saturation value independent ofZcol and propor-
tional to the diameterscol @29#.

2. Experimental results in the bulk

At distancex159.5 mm the experimental curve is prop
erly fitted by Eq.~64!. The latter fit determines the values
the inverse screening lengthkB and of the effective charge
Zcol

eff B in the bulk. Their respective values arekB
21

50.275mm andZcol
eff B511 000. Henceforth

scol52.4kB
21. ~67!
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If expression~64! with measured parameters is identifie
with its approximate DLVO value~65!, then kD

ion;kB and
Zcol is of the same order asZcol

eff B : uZcolu57300. The latter
value is indeed lower than the number 105 of ionizable
groups on the colloid surface before solvatation.

The values derived from the fit give various pieces
information. First, experiments are carried at distances fr
the wall equal tox1;35kB

21 , which is indeed far away in
the bulk, andx2;9kB

21 , while the relative distancey ranges
from about 8kB

21 to 25kB
21 .

Henceforth distancesy are large compared with th
screening length kB

21 and the colloid diameterscol

;2.4kB
21 : they are indeed in the range where electrosta

forces are expected to dominate other short-ranged inte
tions between colloidal particles, and where the monopo
monopole part of electrostatic interactions is indeed the le
ing term.

Another information can be checked from the fit: the Co
lomb coupling between colloidal particles is stron
The ‘‘bare’’ Coulomb coupling parameter Gcol col

[b@Zcole#2/(esolvacol)5Zcol
2 (l/acol) ranges from 370 to

1500 when the mean intercolloid distanceacol varies from
100 mm to 25mm. Meanwhile the effective Coulomb pa
rameter@Zcol

eff B#2kBl, which we define fromGcol col by re-
placingZcol by Zcol

eff B andacol by kB
21 , is of order 105, since

the effective Coulomb parameterkBl between ions is of
order 1023. This effective parameter arises in

wcol col
B ~y!

kBT
;

~kB
21,scol),y

@Zcol
eff B#2l̃

e2 ỹ

ỹ
, ~68!

whereỹ5kBy and l̃5kBl. ~Weak-coupling expansions ar
series in powers ofl̃ times possible logarithms.l̃ is some-
times called the plasma parameter.!

However, we notice that, since the distancesy investi-
gated in the experiment are larger than 8kB

21 , the large in-

tensity of the Coulomb interaction given by@Zcol
eff B#2l̃ is ex-

ponentially reduced by the screening effect contained
exp@2ỹ#: wcol col

B (y) is of orderkBT at y;10kB
21 .

3. Dilute colloids in the vicinity of the wall: modelization from
statistical mechanics of charge fluids

We stress that our model is relevant for the experimen
system of Ref.@2#. First, at the investigated distancesy the
electrostatic force dominates other interactions, as previo
checked in the bulk. Second, our model takes into acco
the characteristic steric and electrostatic features of the
periment. On one hand, all species do not have the s
closest approach distance to the wall, and they have diffe
sizes~see Sec. II A!. ~The closest approach distancebcol of
colloids to the wall is at least of orderscol/2: it is very
different from the corresponding distancebion for micro-
scopic ions.! On the other hand, the existence of a negat
surface charge on the glass wall, and the fact that the ch
of one species is not concentrated at a point but spread
sphere have been discussed in the generalizations of Se
3-13
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If bcol;scol/2, the leading term in the effective electro
static interaction is controlled by the Coulomb interactio
between point effective charges, because the investig
distancesy.8kB

21 andx22bcol;8kB
21 are large compared

both with the screening lengthkB
21 and the colloıd diamete

scol52.4kB
21 . In other words,wcol col at large distancesy

and x2bcol has the same functional form as in a primitiv
model where every charge is concentrated at the center o
impenetrable sphere. The ratio between the effective ch
in the spherical-charge fluid and the effective charge in
point-charge model is expected to be of order unity, as in
cated by the DLVO approximation~66! for the bulk effective
charge, the renormalization of which is equal to 1.5 in
present experiment.

By virtue of Eq.~40!, which is also valid in the presenc
of a surface charge on the wall~as discussed in Sec. V A!,
the screened potentialf(x,x8,y) for point charges is the sum
of a function with algebraic and exponential tails and of
exponentially decaying termfsing(i ) if x and x8 are in the
same subregion (i ). As a consequence, we expect th
hcol col(x,x8,y) as well as the effective interactio
wcol col(x,x8,y) take different forms at distances shorter
larger than some distancey!(x,x8):

wcol col~x,x8,y! ;
y!~x,x8!,y

f col col~x,x8!

y3
~69!

and

wcol col~x,x8,y!

kBT
;

~kB
21,scol),y,y!(x,x8)

zcol col~x,x8!l̃
e2 ỹ

ỹ
.

~70!

Whenx5x8 the distancey!(x) from which the dipolar tail
~69! becomes of the same magnitude order as the expone
tail ~70! is estimated in the following. As checked in th
following subsection, when the distancex from the wall in-
creases, the range of distances 0,y,y!(x), where the ex-
ponential tail inwcol col(x5x8,y) overcomes its dipolar tail
also increases very fast, and the exponential tail tends t
repulsive bulk value,

zcol col~x5x8! ;
~kB

21,scol),(x2bcol)

@Zcol
eff B#2. ~71!

In other words, for (kB
21 ,scol),y,y!(x) and (kB

21 ,scol)
,(x2bcol), wcol col(x5x8,y) tends to the bulk value
wcol col

B (y) given in Eq.~68!.

4. Linearized mean-field estimations

In a dilute system, because of the long-range of the C
lomb interaction,wcol col as well asucol col are expected to
decay at large distances as their mean-field values. The
screening of the Coulomb interaction implies that, thou
bare Coulomb coupling between colloids is strong, the me
field value of wcol col (ucol col) at large relative distances i
expected to be correctly given by linearizing functions
bwcol col (bucol col). ~In the Mayer diagrammatic such a lin
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earized mean-field theory is equivalent to a weak-coupl
and high-dilution limit, as shown in Ref.@11#. The lineariza-
tion is legitimate for purely ionic contributions.! Then

wcol col
LMF ~x,x8,y! ;

~kB
21,scol!,y

@Zcole#2f~x,x8,y!, ~72!

wheref(x,x8,y) is the solution of integral equation~21!. If
charges are not concentrated at points, the effect is conta
in f(x,x8,y). According to general property~7!, sincex and
x8 are larger thanbmax5bcol for colloidal particles,

f col col
LMF ~x,x8!5@Zcole#2D̄f~x!D̄f~x8!. ~73!

If bcol;scol/2, thenbcol;kB
21 in the present experimen

and, whenx andx8 are larger thankB
21 , D̄f(x) is expected

to have the same functional form as the potentialD̄f(0)(x)
calculated for point charges located at the centers
excluded-volume spheres and with uniform density profil
(f (0)(x,x8,y) takes into account the various closest a
proach distances to the wallba’s; henceforthf (0) must not
be confused with the potentialf (0) written in Eq.~44! where
all ba’s are equal to the same valueb.! Therefore, we expec
that for y.y!

LMF(x)

@ZcoleD̄f~x!#2

y3 kBT

;
~kB

21,scol!,~x2bcol!

2
eW

esolv
l̃@AfZcol#

2
e22kB(x2bcol)

ỹ3
,

~74!

wherekB
21 is the same screening length as in the bulk. In

weak-coupling and high-dilution limit, at leading orderkB
(0)

5kD . AfZcol is an effective charge that incorporates vario
effects. At leading order in the Coulomb-coupling and dil
tion parameters,Af(0) is determined by the fact that all spe
cies have not the same approach distance to the wall and
charges are not concentrated at points. The first correc
Af(1) contains effects of the geometric repulsion and
electrostatic response of the wall, of its surface charge an
the nonuniform profile of the electrostatic potential crea
by the charge density profile in the vicinity of the wall. I
fact, if the first correction f (1) is considered, then
wcol col(x,x8,y) itself must also be calculated at the sam
order and then other corrections arise from screened inte
tions mediated by colloids or ions.@The 1/y3 tail of
wcol col

(1) (x,x8,y) is calculated in the case of charges conce
trated at points when there is no surface charge on the
and when all charges have the same approach distance t
wall b!kB

21 in the forthcoming paper@12#. We check that
the charge renormalization is not the same for the 1/y3 tail of
wcol col

(1) (x,x8,y) and for the exponential tail ofwcol col
B (1) (x

2x8,y).#
The distancey!

LMF(x) at which the linearized mean-fiel
dipolar tail ~74! becomes of the same magnitude order as
exponential tail in Eq.~72! can be approximatively calcu
3-14
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lated as the distancey!
(0)(x) at which the 1/y3 algebraic tail

overcomes the exponential tails inf (0) defined in previous
paragraph. The structure off (0) at x.bmax andx8.bmax is
the same as that in Eq.~44! where only the expression o
ZIV

(0)(uku) depends on the fact that allba’s are equal to the
same valueb or not. y!

(0)(x) itself can be determined onl
roughly, because the 1/y3 term dominates all other algebra
tails in f (0)2fsing

(0) at largey, but the exponential tails in
f (0)2fsing

(0) are not easy to estimate, as can be seen
similar situation in Ref.@30#. We assume that the latter ex
ponential tails are of the same order asfsing

(0) 5fD @see Eq.
~28!# or negligible with respect to it. Then, ifkD in f (0) is
replaced bykB , an approximate value ofy!

(0)(x) is the so-
lution of the equation

2
eW

esolv
e22(x̃2b̃col)5@ ỹ!

(0)~x!#2e2 ỹ!
(0)(x), ~75!

where the tilde denotes dimensionless lengths defined a
Eq. ~68!. In the latter approximate equation we have replac
Af(0) by 1, which is the case only when all closest approa
distancesba’s to the wall are equal. WheneW /esolv is of
order 1/80,y!

(0)(x) is equal to 7kB
21 for x5bcol , 10kB

21 for
x2bcol5kB

21 , 15kB
21 for x2bcol53kB

21 , and 20kB
21 for x

2bcol55kB
21 .

In the experimentx259kB
21 . If bcol is approximated by

bcol;scol/2;1.2kB
21 , then (x22bcol);8kB

21 and y!
(0)(x2)

is far larger than they’s investigated. In other words, dipola
tail ~74! is killed by the factor exp@22kB(x22bcol)#
5exp(216);1027 and the exponential tail in Eq.~72!
dominates algebraic tail~74! in the range of investigatedy’s.

5. Experimental results in the vicinity of a single wall

At the finite distancex2;9 kB
21 from the wall,wcol col is

again measured in the range ofy’s from 8kB
21 to 25kB

21 . At
short distances,wcol col is repulsive and decreases wheny
increases, its sign changes aty5yinv;9kB

21 , wcol col has a
negative minimum atymin;13kB

21 , and its dependance ony
for largey’s is compatible with an algebraic law.

In the range 8kB
21,y,yinv;9kB

21 wherewcol col is re-
pulsive, the experimental curve is fitted by the exponentia
fast bulk decay~64!,

wcol col~x5x8,y! ;
y,yinv

wcol col
B ~x5x8,y!. ~76!

If bcol;scol/2, result~76! is in agreement with the linear
ized mean-field approach of the preceding subsection:
exponential tail in the electrostatic pairwise interaction~72!
dominates the repulsive dipolar tail in the whole range
investigatedy. Moreover, it is well approximated by its re
pulsive bulk value, as argued after Eq.~71!.

Therefore, the origin of the attraction measured in exp
ment @2# for y.yinv is not electrostatic interaction at equ
librium. The granted explanation for the observed attract
near one wall relies on a hydrodynamical effect involvi
electrostatic interactions. Squires and Brenner@3# argued that
the experimental curve could be accounted for by the co
02613
a
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h

y

e

f

i-

n
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petition between the exponential tail of the effective elect
static interaction and the hydrodynamical force induced
tween colloids by the external electrostatic field created
the surface charge on the wall. This interaction is attractiv
the surface charge on the wall has the same sign as the
loid charge, which is indeed the case in the experim
where the surface charge on the wall is negative as
charges carried by colloids. Squires and Brenner calcula
the interaction between the surface charge and a colloid
bath of ions by using a linearized mean-field approach w
point charges, namely, by using the same approximation
those used in the preceding subsection for the equilibr
effective electrostatic interactions. For the effective cha
near the wall they took the bulk DLVO expression. For t
sake of completeness, we rewrite their result where we
placekD

ion by the effective inverse screening lengthkB :

ucol col
hyd

kBT
52

t

11~kBscol/2!
@Zcole#2l̃

6~x/scol!
2

~x/scol!2~9/32!

3
x̃2

@4x̃21 ỹ2#3/2
e2[ x̃2(s̃col/2)]. ~77!

In Eq. ~77! t is the ratio between the surface charge dens
on the wall and the surface density of the chargeZcole on a
colloidal sphere. Squires and Brenner showed that Brown
dynamics simulations account for experimental curves w
t50.4. ~The latter value oft can be explained on purel
geometrical grounds in a phenomenological theory
effective-charge saturation@31#.! When t is set to 0.4, the
magnitude order ofucol col

hyd is larger than the electrostatic ex
ponential tail~76! wheny.9kB

21 .

C. Open questions

As a conclusion, the lightning from statistical mechan
of charge fluids at equilibrium to the question at the end
Sec. VI A is the following.

First, the observed attraction between dilute colloidal p
ticles in the vicinity of a single wall cannot arise from pure
electrostatic effects if the linearized mean-field scheme
wcol col is valid, as it is the case in previous mean-field the
ries for ucol col.

For the distances investigated in the experiment of R
@2#, the exponential tail prevails over the algebraic tail. Ho
ever, we stress that the magnitude order of the coeffic
f col col(x,x8) in the 1/y3 tail of wcol col(x,x8,y) is very sensi-
tive to the actual value of the closest approach distancebcol
of colloids to the wall, as it is the case for its linearize
mean-field value. If dilute silica spheres were used instea
polystyrene sulphate spheres, the former denser collo
particles might sediment in a plane parallel to the glass pl
as it is the case in the experiment@27#. ~We recall that in the
experiment@27#, silica colloids are not dilute and results o
Secs. VI B 3 and VI B 4 cannot be applied.! Then, although
all colloids would be constrained to lie in the plane atxbal by
the balance between gravity and the interaction with the w
surface charge, the exponential screening in the directiox
perpendicular to the wall would still be ensured by the pr
3-15
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ence of ions of both signs in the solution.~The localization
of colloidal particles in a plane does not cause qualitat
changes in the electrostatic screening contrarily to what h
pens at an air-water interface@30#.! In this case,bcol would
be equal toxbal, the only accessible distancex for colloids,
and the repulsive dipolar tail~74! at x5xbal would dominate
the exponential tail in Eq.~72! in a range that can be est
mated to bey.y!

(0)(x5bcol);7kB
21 .

If coupling or steric effects at higher density were su
that the linearized mean-field approximation~72! failed, then
the coefficientf col col(x,x8) in the 1/y3 tail of wcol col would
no longer have the dipolar structure~73! and its sign might
vary. In the case of the bulk effective interactionwcol col

B ,
such coupling and steric effects have been investigated
means of approximate closures of the integral Ornste
Zernicke equations for the primitive model@32,33#.

On the other hand, in the experiment of Ref.@4#, where
colloids are densely distributed and confined between
glass walls separated by a distance equal to only a few
loid diameters, Han and Grier exclude any explanation
the observed attraction that would be based on kinem
effects, such as a hydrodynamic coupling.~The latter effect,
which disappears for symmetry reasons when colloids
exactly at the same distance from two equally charged
faces, may arise because experiments necessarily have
gree of off center. However, typical drift speeds in the e
periment of Ref.@4# are far too small to mediate measurab
in-plane hydrodynamic coupling.!

We stress that in the case of a solution confined betw
two plates carrying external negative charges, boundary c
ditions are changed and the arguments used in Sec. II
longer hold. Without any further investigation, we cann
assert whether thef f(x,x8)/y3 tail of f(x,x8,y) is still re-
pulsive everywhere in the fluid and we expect thatf f(x,x8)
no longer has factorized structure~7!. We notice that, in an
approximated calculation where density profiles are unifo
between two plates@8#, f f(0)(x,x8) loses factorization prop
erty ~7!, but it is still repulsive.

Finally, we notice that the electrostatic model with pu
charge-charge Coulomb forces is perhaps too crude. It d
not take into account the polarization of the solvent arou
each colloidal particle. The latter intricate phenomen
might be the root of the observed attraction between li
charge colloids.

ACKNOWLEDGMENTS

We are indebted to J.-M. Caillol, D. Levesque, E. Triza
and J.-J. Weis for fruitful discussions.

APPENDIX

In the present Appendix, we use the principles recalled
the beginning of Sec. IV B in order to determine the form
structure of the 1/y3 tail of the Ursell functionhaa8(x,x8,y),
when all species have the same closest approach distan
the wall. In this case the 1/y3 tail of the bondFcc has dipolar
structure~7! of the screened potentialf
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Fcc~x,x8,y! ;
y→1`

2
be2

esolv
ZaZa8

D̄f~x!D̄f~x8!

y3
. ~A1!

The 1/y3 tail of haa8
22 (x,x8,y) is the sum of the tails of all

graphshm
22(a,a8) with m bonds Fcc (m51,2, . . . ). The

1/y3 tail of hm
22(a,a8) itself is the sum of them tails arising

from every bondFcc in hm
22 by virtue of Eq.~61!. With the

notations of definition~33!, the pth bond Fcc in hm
22 (p

51, . . . ,m) in Fig. 3 links points (p21)85(r p218 ,gp218 )
and p5(r p ,gp). @With notations of Fig. 3 (r08 ,g08)5c and
(rm ,gm)5c8.# According to Eq.~60!, the tail arising from
the pth bondFcc in hm

22(a,a8) reads

2
be2

esolv

1

y3
Ca

22 [ p21]~x!Ca8
22 [m2p]

~x8!. ~A2!

In Eq. ~A2! Ca8
22 [m2p] (x8) denotes the contribution from th

part of hm
22 between pointsp5(r p ,gp) and a85(r 8,a8).

This part containsm2p bondsFcc and

Ca8
22[m2p]

~x8![E dxp(
gp

rgp
~xp!Zgp

D̄f~xp!

3hm2p
22 ~xp ,x8,k50;gp ,a8!. ~A3!

The contribution from the part ofhm
22 between pointsa

5(r ,a) and (p21)85(r p218 ,gp218 ) is equal to the rhs of
Eq. ~A3!, where (xp ,gp) is replaced by (xp218 ,gp218 ) while
hm2p

22 (xp ,x8,k50;gp ,a8) is replaced byhp21
22 (x,xp218 ,k

50;a,gp218 ). We have used the same notation for both co
tributions, becausehp21

22
„a,(p21)8… is symmetric with re-

spect toa and (p21)8. The 1/y3 tail of haa8
22 (x,x8,y) is

equal to

2
be2

esolv

1

y3 (
m51

1`

(
p51

m

Ca
22[ p21]~x!Ca8

22[m2p]
~x8!.

~A4!

The double sum in expression~A4! can be written as a prod
uct of two sums with the result

haa8
22

~x,x8,y! ;
y→1`

2
be2

esolv

1

y3
Ca

22~x!Ca8
22

~x8! ~A5!

with Ca
22(x)[(n50

1` Ca
22[n] (x). By virtue of Eq.~A3!,

Ca
22~x!5E dr 9(

g9
rg9~x9!Zg9D̄f~x9!hag9

22
~r ,r 9!.

~A6!

The 1/y3 tail of haa8
c2 (x,x8,y) appears as the sum of tw

contributions, as it is the case for everyhm
c2 whenm>2. The
3-16
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1/y3 tail arising from the bondFcc attached to a in
hm

c2(a,a8)5hm
c2(x,x8,y;Za ,Za8) is equal to

2
be2

esolv

1

y3
ZaD̄f~x!Ca8

22[m21]
~x8! ~A7!

with the same notation as in expression~A2!. Whenm51,
expression~A7! is the only contribution. Whenm>2, the
1/y3 tail that originates from the otherm21 bondsFcc is the
sum

2
be2

esolv

1

y3
Za (

p52

m

C̄c2[ p21]~x!Ca8
22[m2p]

~x8!. ~A8!

In Eq. ~A8! we have exhibited the fact that the dependen
on Za in hc2 is merely a multiplicative factorZa : we have
definedZaC̄c2[ p21](x) similarly to Ca

22[ p21](x) with hp21
c2

in place of hp21
22 @see the comment after Eq.~A3!#. After

summation overm from 1 to 1`, we get

haa8
c2

~x,x8,y! ;
y→1`

2
be2

esolv

1

y3
Za@D̄f~x!1C̄c2~x!#Ca8

22
~x8!,

~A9!
02613
e

with C̄c2(x)[(n51
1` C̄c2 [n] (x). Similar to Eq.~A6!

ZaC̄a
c2~x!5E dr 9(

g9
rg9~x9!Zg9D̄f~x9!hag9

c2
~r ,r 9!.

~A10!

The asymptotic tail ofhaa8
2c takes a form similar to that o

haa8
c2 : the roles ofa anda8 are exchanged and there appea

a C̄2c(x8) defined by analogy with C̄c2(x) with
hg9a8

2c (r 9,r 8) in place of hag9
c2 (r ,r 9). Since hg9a8

2c (r 9,r 8)

5ha8g9
c2 (r 8,r 9), C̄2c(x8)5C̄c2(x8).

The calculation of the 1/y3 tail of haa8
cc (x,x8,y) is a gen-

eralization of the previous one. Four kinds of contributio
can be distinguished, according to whether the 1/y3 tail of
hm

cc(a,a8) arises or not from the bondFcc attached tox or
from the bondFcc attached tox8. We obtain

haa8
cc

~x,x8,y! ;
y→1`

2
be2

esolv

1

y3
ZaZa8@D̄f~x!1C̄c2~x!#

3@D̄f~x8!1C̄c2~x8!#. ~A11!

After summation of tails~A5!, ~A9! and the symmetric
one, together with tail~A11!, the large-y behavior of
haa8(x,x8,y) proves to have dipolar structure~8! where
Da(x) is given in Eq.~62!.
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